

Name: _____

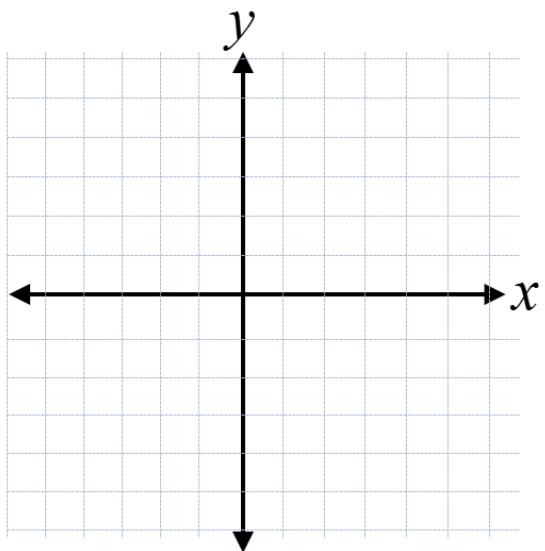
Date: _____

Section 6.2 Math 12 Honours Basics with Graphing Complex Numbers

- Given that the modulus of a complex number is $r = \sqrt{a^2 + b^2}$, can the modulus be negative? Explain:
- Given that a complex number in polar form is $a + ib = r(\cos \theta + i \sin \theta)$, why is the argument θ only be between $-\pi$ and π ? Explain:
- If a complex number is in quadrant 3, what can you tell us about the argument? Explain:
- What happens when you multiply a complex number "z" by just the imaginary value "i"? Explain:
- Suppose the imaginary component of a complex number "z" is $\text{Im}(z) = 4 \cos 17^\circ$ and the modulus of "z" is 4, what the value of $\text{Re}(z) = ??$
- Given that $\text{Re}(z) = 4 \cos 30^\circ$ and $\text{Im}(z) = 4 \sin 30^\circ$, what is the $\text{Re}(z \times i^3)$ and $\text{Im}(z \times i^3)$
- Are the two complex numbers the same? Explain:
$$z_1 = (\cos 240^\circ + i \sin 240^\circ)^3 \quad \text{and} \quad z_2 = (\cos(-120^\circ) + i \sin(-120^\circ))^3$$
- Given that $z_1 = \cos \theta_1 + i \sin \theta_1$ and $z_2 = \cos \theta_2 + i \sin \theta_2$, what is $z_3 = z_1 \times z_2$ in polar form??
- Given that $z_1 = \cos \theta_1 + i \sin \theta_1$ and $z_2 = \cos \theta_2 + i \sin \theta_2$, what is $z_3 = z_1 \div z_2$ in polar form??

10. Represent each of the following complex numbers on the Argand Diagram,

A) $3+i$	B) $-2+i$	C) $-3-i$	D) $1-2i$
E) $4i$	F) $-\sqrt{3}i$	G) $\sqrt{2}+4i$	H) i
I) $5-6i$	J) $-6+4i$	K) $2(\cos 45^\circ + i \sin 45^\circ)$	
L) $-2(\cos \frac{\pi}{3} - i \sin \frac{\pi}{3})$	O) $-5(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$		



11. Find the Modulus and Argument for each of the complex numbers and then convert to polar form:

i) $\sqrt{3}+i$	ii) $-1-i\sqrt{3}$
iii) $12+5i$	iv) $-\sqrt{2}-\sqrt{2}i$
v) $6i$	vi) $-4i$
vii) $3+2i$	viii) $-3-3i\sqrt{3}$

ix) $(12+3i)(5-4i)$	x) $-2(\cos 30^\circ + i \sin 30^\circ) \times 3(\cos 45^\circ - i \sin 45^\circ)$
---------------------	--

12. Reduce the following to rectangular form: $a + ib$

i) $4(\cos 90^\circ + i \sin 90^\circ)$	ii) $3(\cos 240^\circ + i \sin 240^\circ)$
iii) $2(\cos 315^\circ + i \sin 315^\circ)$	iv) $-4(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6})$
v) $-2(\cos \frac{\pi}{3} - i \sin \frac{\pi}{3})$	vi) $-5(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$

13. Find $z_1 \times z_2$, $\frac{z_1}{z_2}$, and also $\frac{z_2}{z_1}$: $z_1 = \sqrt{2}(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ $z_2 = \frac{1}{\sqrt{2}}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$

14. Find $z_1 \times z_2$, $\frac{z_1}{z_2}$, and also $\frac{z_2}{z_1}$: given that: $z_1 = -2(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$ $z_2 = 3(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6})$

15. (1995 AIME) For certain real values a, b, c, and d, the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ has four non-real roots. The product of two of these roots is $13 + i$ and the sum of the other two roots is $3 + 4i$, where $i = \sqrt{-1}$. Find "b"

16. The polynomial $f(z) = az^{2018} + bz^{2017} + cz^{2016}$ has real coefficients not exceeding 2019, and

$$f\left(\frac{1+\sqrt{3}i}{2}\right) = 2015 + 2019\sqrt{3}i. \text{ Find the values of "a", "b", and "c":}$$

17.

(1988 AIME Problem 11) Let w_1, w_2, \dots, w_n be complex numbers. A line L in the complex plane is called a mean line for the points w_1, w_2, \dots, w_n if L contains points (complex numbers) z_1, z_2, \dots, z_n such that

$$\sum_{k=1}^n (z_k - w_k) = 0.$$

For the numbers $w_1 = 32 + 170i$, $w_2 = -7 + 64i$, $w_3 = -9 + 200i$, $w_4 = 1 + 27i$, and $w_5 = -14 + 43i$, there is a unique mean line with y -intercept 3. Find the slope of this mean line.